
	
	

Amida	Technology	Solutions,	Inc.	 Page	1	
Developer	Portals	for	CMS	patient	access	FHIR	APIs	 December	2021	

A White Paper on 

Developer Portals for CMS patient access FHIR APIs	

Ryan	M.	Harrison		
Mike	Hiner	

	
Amida	Technology	Solutions,	Inc.	

December	2021	

Summary 
The	Centers	for	Medicare	and	Medicaid	Services	(CMS)	Interoperability	and	Patient	Access	Final	
Rule	(CMS-9115-F)	requires	commercial	payers,	Medicaid	Advantage	plans,	and	state	Medicaid	
agencies	to	provide	a	patient	access	API	that	will	let	patients	delegate	access	to	their	claims	and	
clinical	records	to	third-party	applications.	This	white	paper	describes	the	key	features	of	
developer	portals	and	emphasizes	how	they	enable	third	parties	to	use	CMS-mandated	APIs	
“without	special	effort.”	

Conceptual Architecture of a CMS patient access API solution 
Application	developers	would	use	a	Medicaid	FHIR	developer	portal	to	build	custom	applications	
for	Medicaid	members	or	to	integrate	Medicaid	member	data	into	existing	applications.	A	single	
portal	can	serve	both	first-party	and	third-party	developers;	it	is	not	necessary	to	maintain	two	
distinct	portals.1	In	Figure	1,	we	show	the	developer	portal	within	the	context	of	the	major	
components	in	a	patient	access	solution.	

	
Figure	1	–	Architectural	context	for	the	developer	portal	(highlighted	in	red).	

	
1	Indeed,	the	author	considers	the	act	of	“dogfooding”	one’s	own	APIs	to	be	a	best	practice.	



	
	

Amida	Technology	Solutions,	Inc.	 Page	2	
Developer	Portals	for	CMS	patient	access	FHIR	APIs	 December	2021	

Landing Page (API Summary) 
Developers	start	here.	The	landing	page	contains	a	marketing	description	of	the	API.	Where	the	
developer	portal	serves	multiple	APIs,	the	landing	page	provides	a	high-level	graphical	depiction	
that	summarizes	the	APIs,	with	links	to	more	detailed	marketing	pages	about	each.	Some	
organizations	provide	separate	audience-specific	marketing	pages,	e.g.	“Medicaid	Administrators,”	
“Fiscal	Agents,”	and	“Community	Developers.”	

Quickstart Guide 
A	guiding	principle	for	modern	developer-portal	design	is	“show,	don’t	tell.”	The	Quickstart	guide	
shows,	in	code,	a	minimum	viable	example	of	how	to	use	the	API’s	core	functionality.	Links	to	
sample	applications	that	show	more	complex	functionality	are	often	available	on	public	source-
control	repositories	such	as	GitHub	or	GNU	Savannah.	A	short	sixty-	to	ninety-second	introduction	
video	can	serve	as	a	marketing	tool,	and	it	can	reduce	the	number	of	HelpDesk	inquiries	for	the	
most	frequently	asked	developer	questions.2	

API Documentation 
The	API	documentation	serves	as	a	complete	reference	for	all	available	endpoints.	Common	API	
specification	languages,	used	in	the	definition	of	API	contracts,	include	Swagger/OpenAPISpec,	
RAML,	and	API	Blueprint.	API	documentation	can	be	generated	automatically	from	these	contracts.	
“Static”	documentation	only	describes	API	usage,	whereas	“Live”	documentation	describes	usage	
and	allows	the	developer	to	make	API	requests	from	within	the	API	documentation.	“Live”	
documentation	can	be	handled	by	either	a	mock	server	(which	returns	data	based	on	the	API	
specification)	or	a	sandbox	environment	(which	returns	synthetic	data).	API	release	notes	would	
also	appear	in	this	section.	Technical	marketing	and	update	guidance	often	accompany	major	
releases	—	for	example,	an	update	from	FHIR	R4	to	R5.	

Sandbox Access 
Whereas	some	APIs	contain	public	information	and	do	not	require	developer	registration,	FHIR	
APIs	provide	access	to	patient	health	information;3	therefore,	the	developer	portal	must	give	
instructions	for	application	registration.	Once	registered,	the	application	will	be	provided	
credentials	that	allow	the	developer	to	work	in	a	production-like	“sandbox”	environment	populated	
with	sample	data.	Unlike	production	access,	sandbox	access	does	not	require	manual	review	and	
can	be	granted	automatically.		

The	benefits	of	providing	sandbox	access	include:	1)	developers	build	their	applications	in	a	SMART	
on	FHIR	implementation	identical	to	the	production	environment,	which	reduces	the	risk	of	access	
control	misconfiguration;	2)	the	sandbox	contains	sample	data,	which	lets	developers	design	the	
application	UI	using	responses	similar	to	those	used	in	the	production	environment;	3)	reduced	
HelpDesk	inquiries,	because	developers	can	“self-service”	specific	usages	simply	by	making	
requests.	

	
2	Likewise,	a	user-facing	video	that	covers	how	to	use	third-party	apps,	what	information	will	be	shared,	and	how	to	
revoke	access	can	reduce	HelpDesk	volume	for	common	user	inquiries.	
3	The	individual	access	APIs	mandated	for	2021	are	read-only.	Neither	the	sandbox	nor	production	environments	will	
support	third-party	applications	writing	data	to	the	state	Medicaid	agency’s	FHIR	implementation.	



	
	

Amida	Technology	Solutions,	Inc.	 Page	3	
Developer	Portals	for	CMS	patient	access	FHIR	APIs	 December	2021	

Production Access 
Production	access	is	required	for	state	Medicaid	members	to	delegate	access	to	their	information.	
Unregistered	applications	cannot	retrieve	member	data.	Before	allowing	production	access,	patient	
access	APIs	should	apply	a	vetting	process	to	ensure	that	applications	meet	a	minimum	standard.	
Data	breaches	and	other	negative	PR	events	will	reflect	poorly	on	the	API	owner,	even	if	a	third-
party	application	developer	is	technically	at	fault.4	

In	their	API	Maintenance	of	Certification	criteria,	the	Office	of	the	National	Coordinator	for	Health	
Information	Technology	(ONC)	is	prescriptive	about	permitted	timelines	for	application	vetting.5,6	
Briefly,	a	certified	API	Developer	has	ten	days	to	complete	Authenticity	Verification,	followed	by	
five	days	for	Application	Registration.	Vetting	requirements	should	include	a	privacy	policy	and	a	
data	use	policy	that	explain	to	the	Medicaid	member	–	in	plain	English	–	how	the	member’s	
information	will	be	used,	combined,	and	shared.	Naturally,	the	automation	effort	applied	to	vetting	
should	be	proportional	to	the	volume	of	application	registrations.	At	low	volume,	a	wholly	manual	
process	is	sufficient	(e.g.,	emailing	a	checklist);	at	higher	volume,	semi-automation	with	a	
dashboard	for	application	registrants	and	vetting	staff	is	advisable.	

Support 
Developer	portals	often	provide	links	to	resources	such	as	source	repositories7	and	community	
forums	(e.g.,	Mastodon	communities).	Support	also	includes	system	status	pages	to	notify	the	
community	of	outages	and	production	issues,	as	well	as	a	security	contact	for	reporting	security	
vulnerabilities	in	the	API.	Support	is	the	most	important	fixture	of	developer	community	
engagement.	Responsiveness	–	including	alerts	to	the	developer	community	about	major	updates	
(especially	those	that	break	API	compatibility)	and	announcements	of	security	vulnerabilities	–	
builds	trust	and	loyalty	over	time.8	

Budget Gotchas 
Build	vs	Buy	
Organizations	must	budget	for	both	the	upfront	and	the	ongoing	costs	of	a	developer	portal.	The	
most	important	decision	is	whether	to	buy	and	configure	a	vendor	product	(e.g.,	3Scale,	Apigee,	
Kong,	MuleSoft,	Tibco,	etc.)9	or	build	a	custom	portal.10	

	
4	Facebook	received	widespread	criticism	for	data	misuse	as	a	result	of	the	Cambridge	Analytica	scandal,	despite	the	fact	
that	the	bulk	of	the	misuse	was	committed	by	Cambridge	Analytica	(enabled	by	Facebook’s	API	design).	
5	Summarized	in	“21st	Century	Cures	Act:	Interoperability,	Information	Blocking,	and	the	ONC	Health	IT	Certification	
Program	Final	Rule”	[https://www.healthit.gov/sites/default/files/facas/2020-03-
18_ONC_21st_Century_Cures_Act_Final_Rule_Presentation_1.pdf]	
6	Although	distinct,	the	ONC	(84	FR	7424)	and	CMS	(84	FR	7610)	rules	are	designed	to	work	in	concert.	The	CMS	rules	
“pass	through”	API	standards	to	ONC;	satisfying	the	ONC	API	technical	criteria	for	certification	should	meet	the	CMS	rule.	
7	One	advantage	of	publicly	available	software	backlogs	is	that	developers	can	comment	directly	on	the	issues	that	impact	
them.	In	other	words,	the	link	between	support	and	development	is	made	transparent.		
8	The	role	of	Developer	Advocate	has	emerged	to	serve	this	need.	
9	At	the	Enterprise-tier,	the	developer	portal	is	offered	as	a	component	of	a	complete	API	Management	solution,	
encompassing	API	design,	API	Gateway	(e.g.,	rate-limiting),	and	non-technical	administration	(e.g.,	a	non-technical	user	
using	the	vendor	GUI	to	recompose	a	set	of	individual	API	end-points	into	an	API	Product	with	a	monetization	strategy).	
These	features,	often	branded	as	“API	life-cycle	management,”	are	most	valuable	when	administering	collections	of	APIs,	
as	opposed	to	a	single	API.	
10	Both	vendor	products	and	custom	builds	often	utilize	a	content	management	system,	like	Drupal,	as	the	technical	
backbone	of	the	developer	portal.	For	smaller	projects,	developer	portals	can	be	built	on	GitHub	Pages.	



	
	

Amida	Technology	Solutions,	Inc.	 Page	4	
Developer	Portals	for	CMS	patient	access	FHIR	APIs	 December	2021	

Technical	Writers	
Technical	writing	is	frequently	overlooked	as	an	upfront	and	ongoing	cost.	An	API	contract	–	for	
example,	a	Swagger	specification	–	written	by	engineers	and	suitable	for	communication	between	
first-party	development	teams,	will	not	be	sufficient	as	API	documentation	for	third	parties.	As	the	
API	evolves	over	time,	code	changes	must	be	accounted	for	in	the	documentation.	The	need	for	
technical	writing	waxes	and	wanes,	with	peaks	around	major	release	dates,	but	it	must	be	
considered	until	deprecation	or	end-of-life.	

Technical	writing	is	not	just	a	cost	center;	it	can	contribute	to	top-line	revenue	for	monetized	APIs.	
Technical	writers	can	increase	API	adoption	by	creating	inbound	marketing	collateral	—	for	
example,	blog	posts	that	introduce	important	API	features.	These	materials	can	highlight	the	
differences	between	community	tiers	and	paid	tiers,	and	they	are	invaluable	technical	marketing	
collateral.	

About Amida 
Amida	is	a	software	company	focused	on	enterprise	data	management,	cybersecurity,	and	digital	
platform	strategies.	We	design,	develop,	and	deploy	systems	that	enable	the	secure	and	reliable	
exchange	of	sensitive	information.	Amida	builds	open-source	solutions	that	collect	and	prepare	
data	from	a	variety	of	sources	–	independent	of	structure,	format,	provenance,	and	schema	–	for	
applications	like	business	intelligence,	predictive	analytics,	and	downstream	transactions.	We	are	
especially	well-known	for	open	data	architectures	and	production	services	that	are	scalable,	
efficient,	modular,	and	secure.	Our	software	engineers	and	data	scientists	have	extensive	
experience	in	data	modeling,	governance,	interoperability	and	exchange,	and	visualization,	
especially	in	health	IT.	

Amida’s	founding	team	co-conceived	and	led	the	design,	implementation,	and	production	
deployment	of	the	Blue	Button	personal	health	record	at	the	Department	of	Veterans	Affairs	(VA),	
and	they	supported	its	development	and	deployment	at	the	Centers	for	Medicare	and	Medicaid	
Services	(CMS)	and	in	the	Department	of	Defense	(DOD)	Military	Health	System.	They	co-conceived	
and	led	the	creation	of	the	Joint	Legacy	Viewer,	a	clinician	portal	used	by	hundreds	of	thousands	of	
VA	and	DoD	healthcare	providers	every	day.	This	portal	is	the	cornerstone	of	both	agencies	EHR	
modernization	efforts.	They	also	led	the	design	and	prototype	construction	(the	“Virtual	Regional	
Office”)	for	the	service-connected	disability	claims	platform,	which	is	still	in	enterprise	service	
today.	


